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The propagation of fully nonlinear ion-acoustic solitary waves in a magnetized 
plasma with cold ions and warm electrons is studied analytically. Necessary 
conditions for the existence of solitary waves in such a plasma were obtained by 
Yu et al. In this paper necessary and sufficient conditions are found. 

1. INTRODUCTION 

Propagation of ion-acoustic solitons in a magnetized plasma has been 
studied theoretically and experimentally by several authors and interesting 
results have been obtained which have physical applications. Through the 
derivation of a nonlinear wave equation Zakharov and Kuznetsov (1974) 
showed the existence of small-amplitude three-dimensional ion-acoustic soli- 
tons in a low-fl magnetized plasma. In a kinetic approach, Swift (1975) 
obtained an equation for an oblique electrostatic shock in a magnetized 
plasma by solving the Poisson-Vlasov equation and calculating the ion 
density from adiabatic theory. Shukla and Yu (1978) showed that the finite- 
amplitude ion-acoustic soliton can occur in a plasma having an external 
magnetic field oblique to the propagating wave. Chaturvedi (1976) investiga- 
ted the nonlinear electrostatic ion-cyclotron waves propagating nearly per- 
pendicular to the magnetic field. Yu et al. (1980) investigated the fully 
nonlinear planar ion-acoustic solitary wave moving obliquely to an ex- 
ternal magnetic field and obtained some conditions for the existence of a 
solitary wave in the plasma. On the other hand, a unified formulation was 
presented by Lee and Kan (1981) for the study of the nonlinear low- 
frequency electrostatic waves in a magnetized low-fl  plasma. Experiments 
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on the propagation of an ion-acoustic soliton in a magnetized plasma have 
been described by Lonngren and co-workers (Hill et al., 1987; Forsling et 
al., 1989; Roychowdhury et al., 1987), and important results have been 
obtained by them. 

Theoretical investigation of plasma phenomena in a magnetized plasma, 
particularly the formation of an ion-acoustic soliton, has been carried out 
for the last few years, yet many problems on shocks, double layers, etc., 
have not been understood fully. In the present paper we investigate the fully 
nonlinear ion-acoustic solitary waves in a magnetized plasma having cold 
ions and warm electrons. We show that the conditions obtained by Yu et 
al. (1980) are not sufficient and some additional conditions are required for 
the existence of the ion-acoustic soliton in a magnetized plasma. 

2. FORMULATION AND ANALYTICAL STUDY 

For our present study, we start with the following equation obtained by 
Yu et al. (1980) for ion-acoustic solitary waves propagating in a magnetized 
plasma having cold ions and warm electrons: 

where 

=0 (1) 

///4 
{KZzn 2(n - 1) 2 + 2n V2[(1 - K2)n Inn Ip t -  vz(F/2 - V 2) 

- (n  - K ~ ) ( n  - 1)1 + V4(1 -n )  2} (2) 

~= - V t + K ~ x + K z Z ,  K Z + K  2= l, n = n({) (3) 

Here Vt is the Sagdeev potential, n is the ion density normalized with the 
background plasma density no such that n = 1 at ~ = 4- m, v is the speed of 
the localized pulse normalized with the ion-acoustic speed Cs, and K~ and 
Ks are the wave vectors in the x and z directions. 

Yu et al. showed that equation (1) will have a soliton solution if 

~,(1) = C ' ( 1 )  = 0 (4) 

v,(N) =0 (5) 

g(n) < 0 (6) 

for either l < n < N o r  0 < N < n < l .  
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If  N >  1, then one has a density hump, and if N <  1, one has a density 
cavity. 

It is obvious that (5) and (6) are equivalent to the following: 
(i) N is uniquely determined by 

~ ( N ) = 0  (7) 

(ii) g,(n)<0 near n =  1 and n=N, i.e., 

~,"0)<0  (8) 

( N -  1) ~t'(N) > 0 (9) 

Yu et al. rightly noted that equation (2) satisfies equation (4) and they 
also checked the negativeness of V near n = 1 and n = N. But they did not 
prove that there exists a unique N such that (7) is true. In order to check 
whether ~,<0 near n =  1 and n=N, they expanded V in powers of ( n - 1 )  
and ( n - N )  as 

(V2-K2z)(n- 1) 2 2(7K~V2-6V4-3K~+2V 2) 
( n -  1) 3 (10) 

~t-- V2(V 2 -  1) 3vZ(v  2 -  1) 2 

U3( U - 1)(V 2 -  K~ N) 
gr= VZ(N2_ V2 ) ( n - N )  (11) 

From (7)-(11), they obtained the condition 

N2> 1> V 2 (12) 

Now, we shall check the negativeness of ~ near n = 1 and n = N and find 
whether N satisfying (7) is unique. Moreover, we shall see whether some 
restrictions on K., V, and N are needed to satisfy (8) and (9) from (2) ; we 
note that (8) is satisfied if and only if 

Kz2< V2< 1 (13) 

and (9) is satisfied if and only if 

V 2 
N>~5.2 for 1 <N<n (14a) 

Kz 

N < V  for 0 < N < n < l  (14b) 

The relation (14b) is not valid for the existence of the soliton solution, 
because we see from (2) that g ,~  oo and n --, Vand so for the soliton solution 
of (1) there exists an N (<V)  such that ~ ( N ) = 0  for 0 < N < n <  1, which 
contradicts the result (14b). Consequently, N <  1 is not possible. 
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Also note that one can get conditions (13) and (14) from the power 
series expansions of ~ near n =  1 and n = N  given by (10) and (11), respec- 
tively. From (13) and (14), we get 

V 2 
N > ~ Z >  1 > V 2 (15) 

Kz 

which includes the condition (12) found by Yu et al. 
Our next task is to show that N (>1) satisfying (7) is unique. Equiva- 

lently we have to show that N (>1) is uniquely determined by the equation 

where 

z(n)- 

Proof of uniqueness of N. 

Z(n)=0  (16) 

V2(n 2-  V2) 2 
n4 vt(n) (17) 

From (17) we see that z ( l + e ) < 0  and 
Z(oo) > 0, where e (>0) is an arbitrary number. Consequently, 7/(1 + e )<  0 
and 7/(oo) >0, where 

z(n) 
t/(n) = n2 (18) 

Owing to the continuity of r/(n), there exists one N1 such that 

r/(N0 = 0 and N1 > 1 (19) 

If  possible, let there exist N~ and N2 such that 

z(N,) = z(N2) = 0 

i.e., 

7/(N1) = 7/(N2) = 0 and N2 > N, > 1 (20) 

From (20), applying Rolle's theorem, there exist N3 and N4 such that 

tl'(N3) = rl'(N4) = 0 and N2>N4>N1 >N3> 1 (21) 

But 

r/(n) = 2(n - 1)F(n) (22) 
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where 

Kzn - V2K~n + F(n)= 2 3 V2n 2_ V 4 

From (21)-(23), 

F(N3) = F ( N 4 )  = 0  

79 

(23) 

and N z > N 4 > N 1  >N3> 1 (24) 

But F(n) is a polynomial of degree 3 such that F ( -  oo) < 0, F(0) > 0, F(1) < 0, 
and F(oo)>0, and so we see that F(n) vanishes only for n > l ,  which 
contradicts (24). 

Hence there exists a unique N (>1) such that z ( N ) =  O. 

3. SUMMARY AND SOME CONCLUDING REMARKS 

In this paper, the propagation of fully nonlinear ion-acoustic waves 
through a magnetoplasma has been studied and conditions for the existence 
of ion-acoustic solitons obtained. We have shown that a density hump of 
the solitary wave may be formed in a magnetoplasma, but a cavity would 
not be formed at all. From (15), we see that the conditions for a density 
hump are N> (V2/K2z) > 1 > V 2, while the conditions for a hump obtained 
by Yu et al. (1980) are N2> 1 > V 2. Further, we see that N is uniquely 
determined by v(n)  = 0 and n #0. 

The magnetoplasma of the earth's ionosphere is a finite-fl plasma 
system. From satellite $3-3 observation, nonlinear ion-cyclotron waves have 
been observed along auroral magnetic field lines above the ionosphere 
(Temerin et al., 1979). It is thought that nonlinear ion-cyclotron or ion- 
acoustic waves have an important role in the formation of small-scale auroral 
arcs (Sutradhar and Bujabarua, 1987). In the last few years several research- 
ers have obtained the conditions for the existence of an ion-acoustic soliton 
in the earth's magnetosphere. But our results and conditions may be more 
suitable for the occurrence of solitons in the magnetosphere, in particular, 
the factor V2/K~ may have a vital role in the formation of a precursor of 
the solitary wave because this factor is related to the velocity of a localized 
pulse and the wave vector. Recently, Patel and Dasgupta (1987) reported 
some observational results on solitons in the earth's magnetosphere and 
explained theoretically the characteristics of solitary waves. 
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